

1

2

Tangent lines

- Recall Newton's method:
- Convert a non-linear algebraic expression into a linear problem
- Find the expression of the tangent line at ($x_{k}, f\left(x_{k}\right)$)
- The tangent line is a single linear equation in a single unknown - It is trivial to find the solution

3

Root-finding problems

- Recall that we will convert a non-linear algebraic equation into a root-finding problem:

$$
\begin{aligned}
& x^{2}+2 x-4 y+y^{2}+1=\cos (x y)+3 \\
& x^{2}+2 x-4 y+y^{2}-2-\cos (x y)=0
\end{aligned}
$$

4

Real-valued functions of two real variables

- Suppose we have a real-valued function of two variables

$$
f(x, y)=J_{0}\left(\sqrt{x^{2}+y^{2}}\right)
$$

Tangent planes in higher dimensions

- Recall that given a differentiable function,
we can find a tangent line at any point
- Given a differentiable function of a 2-dimensional vector variable, we can find a tangent plane at any point
- Given a differentiable function of n-dimensional vector variable, we can find a tangent ($n-1$)-dimensional hyperplane at any point

7

Tangent planes in higher dimensions

- In one dimension: $f(x) \approx f\left(x_{0}\right)+\frac{d}{d x} f\left(x_{0}\right)\left(x-x_{0}\right)$
- In two dimensions: $f(\mathbf{u}) \approx f\left(\mathbf{u}_{0}\right)+\vec{\nabla} f\left(\mathbf{u}_{0}\right) \cdot\left(\mathbf{u}-\mathbf{u}_{0}\right)$

$$
=f\left(\mathbf{u}_{0}\right)+\binom{\frac{\partial}{\partial u_{1}} f\left(\mathbf{u}_{0}\right)}{\frac{\partial}{\partial u_{2}} f\left(\mathbf{u}_{0}\right)} \cdot\left(\mathbf{u}-\mathbf{u}_{0}\right)
$$

- In n dimensions: $\quad f(\mathbf{u}) \approx f\left(\mathbf{u}_{0}\right)+\vec{\nabla} f\left(\mathbf{u}_{0}\right) \cdot\left(\mathbf{u}-\mathbf{u}_{0}\right)$

$$
=f\left(\mathbf{u}_{0}\right)+\left(\begin{array}{c}
\frac{\partial}{\partial u_{1}} f\left(\mathbf{u}_{0}\right) \\
\vdots \\
\frac{\partial}{\partial u_{n}} f\left(\mathbf{u}_{0}\right)
\end{array}\right) \cdot\left(\mathbf{u}-\mathbf{u}_{0}\right)
$$

Zeros of a function of two variables

- Given a surface, it tends to be zero along curved lines

$$
f(\mathbf{u})=J_{0}\left(\sqrt{u_{1}^{2}+u_{2}^{2}}\right)
$$

9

Approximating the solution to a non-linear algebraic equation

A vector-valued function

- Given two surfaces, there are isolated points were both surfaces are simultaneously zero

Solutions to equations

- Given two expressions, let us think of them a vector-valued function of a vector variable

$$
\begin{gathered}
f_{1}(\mathbf{u})=J_{0}\left(\sqrt{u_{1}^{2}+u_{2}^{2}}\right) \\
f_{2}(\mathbf{u})=\sin \left(u_{1}\right)-\cos \left(u_{2}\right) \\
\mathbf{f}(\mathbf{u})=\binom{J_{0}\left(\sqrt{u_{1}^{2}+u_{2}^{2}}\right)}{\sin \left(u_{1}\right)-\cos \left(u_{2}\right)} \\
\mathbf{f}(\mathbf{0})=\binom{1}{-1}
\end{gathered}
$$

11

Approximating the solution to a non-linear algebraic equation

Our problem

- Thus, we will have an n-dimensional vector-valued function of an n-dimensional vector variable $\mathbf{f}(\mathbf{u})$
- For example,

$$
\mathbf{f}(\mathbf{u})=\left(\begin{array}{c}
10\left(u_{2}-u_{1}\right) \\
u_{1}\left(28-u_{3}\right)-u_{2} \\
u_{1} u_{2}-\frac{8}{3} u_{3}
\end{array}\right)
$$

- We want to find values of \mathbf{u} such that $\mathbf{f}(\mathbf{u})=\mathbf{0}$
- In this case, we have:

$$
\mathbf{u}=\mathbf{0} \quad \mathbf{u}=\left(\begin{array}{c}
6 \sqrt{2} \\
6 \sqrt{2} \\
27
\end{array}\right) \mathbf{u}=\left(\begin{array}{c}
-6 \sqrt{2} \\
-6 \sqrt{2} \\
27
\end{array}\right)
$$

Fixed-point iteration

- Some of you keeners may have noted the following:

$$
\mathbf{0}=\left(\begin{array}{c}
10\left(u_{2}-u_{1}\right) \\
u_{1}\left(28-u_{3}\right)-u_{2} \\
u_{1} u_{2}-\frac{8}{3} u_{3}
\end{array}\right) \quad\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)=\left(\begin{array}{c}
10 u_{2}-9 u_{1} \\
u_{1}\left(28-u_{3}\right) \\
\frac{3}{8} u_{1} u_{2}
\end{array}\right)
$$

- Thus, solving $\mathbf{f}(\mathbf{u})=\mathbf{0}$ is the same as solving $\mathbf{g}(\mathbf{u})=\mathbf{u}$ and so apply fixed-point iteration

$$
\mathbf{g}(\mathbf{u})=\left(\begin{array}{c}
10 u_{2}-9 u_{1} \\
u_{1}\left(28-u_{3}\right) \\
\frac{3}{8} u_{1} u_{2}
\end{array}\right)
$$

- Thus, start with an initial guess \mathbf{u}_{0}, and then $\mathbf{u}_{1} \leftarrow \mathbf{g}\left(\mathbf{u}_{0}\right)$

13

Approximating the solution to a non-linear algebraic equation

Our problem

- In most cases, we will not be able to solve $\mathbf{f}(\mathbf{u})=0$ exactly
- Instead, we will start out with an approximation

$$
\mathbf{f}\left(\mathbf{u}_{0}\right) \approx \mathbf{0}
$$

- Then, like with a real-valued function of a real variable, we will devise a Newton-like method but for higher dimensions
- We will find a sequence of vectors $\mathbf{u}_{0}, \mathbf{u}_{1}, \mathbf{u}_{2}, \ldots$ where hopefully

$$
\begin{aligned}
& \left\|\mathbf{f}\left(\mathbf{u}_{0}\right)\right\|_{2}>\left\|\mathbf{f}\left(\mathbf{u}_{1}\right)\right\|_{2}>\left\|\mathbf{f}\left(\mathbf{u}_{2}\right)\right\|_{2}>\cdots \\
& \lim _{k \rightarrow \infty}\left|f\left(x_{k}\right)\right|=0 \quad \lim _{k \rightarrow \infty}\left\|\mathbf{f}\left(\mathbf{u}_{k}\right)\right\|_{2}=0
\end{aligned}
$$

Summary

- Following this topic, you now
- Are aware that differentiable function of two variables is smooth and has tangent planes
- Know that, as with linear equations, we require n expressions in n variables
- Know that we will be expressing this as a vector-valued function of a vector variable
- Understand the idea of finding the simultaneous root of n expressions in n variables
- Are aware that we will use a Newton-like method but in higher dimensions

15

Acknowledgments

Anda Su for noting a mistake in Slide 13 in the conversion of the system of nonlinear equations to $\mathbf{x}=g(\mathbf{x})$

Disclaimer

These slides are provided for the ECE 204 Numerical methods course taught at the University of Waterloo. The material in it reflects the author's best judgment in light of the information available to them at the time of preparation. Any reliance on these course slides by any party for any other purpose are the responsibility of such parties. The authors accept no responsibility for damages, if any, suffered by any party as a result of decisions made or actions based on these course slides for any other purpose than that for which it was intended.

